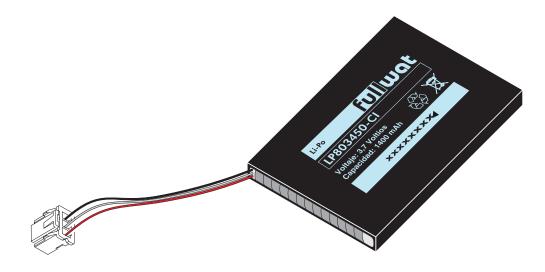


LP803450-CI • Lithium soft bag prismatic cell



1. Scope

This specification governs the performance of the following FULLWAT Lithium soft bag prismatic cell.

2. Battery specification

ltem	Parameter		Remark	
Nominal capacity	1400mAh		0.2C₅A discharge, 25°C	
Nominal Voltage	3.7V		Average Voltage at 0.2C ₅ A discharge	
Standard Charge Current	280mA		Working Temperature: 0~45°C	
Max Charge Current	1400mA		Working Temperature: 0~45°C	
Charge cut-off Voltage	4.20 ± 0.05V		CC/CV	
Constant discharge current	280mA		Working Temperature: -10~60°C	
Maximum discharge current	2800mA		Working Temperature: -10~60°C	
Discharge cut-off Voltage	2.75V			
Cell Voltage	3.76~3.9V		When leave factory	
Impedance	≤35mΩ		AC 1KHz after 50% charge 25°C	
Weight	Approx: 34g			
Storage Temperature	≤1 month	-10~45°C	Dest 2015°C for loss time stores	
	≤3 month	0~30°C		
	≤6 month	20±5°C	Best 20±5°C for long-time storage	
Storage Humidity	65±20% RH			

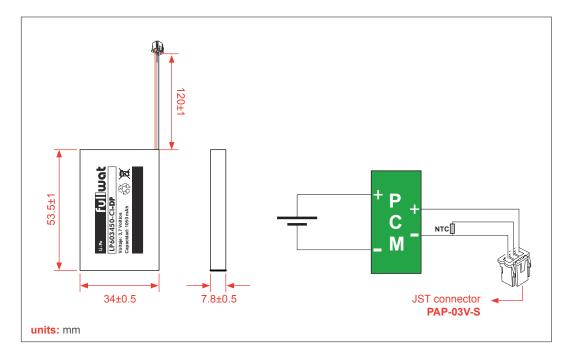
3. PCM specifications

ltem	Item	Parameter	
Over charge protection	Over charge detection voltage	4.325 ± 0.05V	
	Over charge detection delay time	0.96 ~ 1.4S	
	Over charge release voltage	4.075 ± 0.025V	
	Maximum charge current	≤2.5A	
Over discharge protection	Over discharge detection voltage	2.5 ± 0.05V	
	Over discharge detection delay time	144 ± 29mS	
	Over discharge release voltage	2.9 ± 0.05V	
Over current protection	Over current detection voltage	0.15 ± 0.015V	
	Over current detection current	2.5 ~ 4.0A	
	Detection delay time	7.2 ~ 11mS	
	Relase condition	Cut load	
	Maximum continuous current	≤ 2.5A	
Short protection	Detection condition	Exterior short circuit	
	Detection delay time	220 ~ 380uS	
	Relase condition	Cut short circuit	
Interior resistance	Main loop electrify resistance	Vc=4.2V; Rss≤70mΩ	
Current consuption	Current consume in normal operation	3.5µ А Туре 7.0µ А Мах	
NTC	Resistance	10KΩ ± 5%	
	ß	3435	

4. General performance

Definition of standard charging method: At 20±5°C, charging the cell initially with constant current 280mA till voltage 4.2V, then with constant voltage 4.2V till current declines to 70mA.

Item	Test methods	Performance
0.2C Capacity	After standard charging, laying the battery 0.5h, then discharging at $0.2C_5A$ to voltage 2.75V, recording the discharging time.	≥300min
1.0 Capacity	After standard charging, laying the battery 0.5h, then discharging at $1C_5A$ to voltage 2.75V, recording the discharging time.	≥54min
Cycle life	Constant current $1C_5A$ charge to 4.2V, then constant voltage charge to current declines to 0.05 C_5A , stay 5min, constant current $1C_5A$ discharge to 2.75V, stay 5 min. Repeat above steps till continuously discharging time less than 36min.	≥300min
Capability of keeping electricity	20 \pm 5°C, After standard charging, laying the battery 28 days, discharging at 0.2 C ₅ A to voltage 2.75V, recording the discharging time.	≥240min



5. Safety test

Test conditions: The following tests must be measured air and safety protection conditions. All batteries must standard charge and lay 24h.

ltem	Test methods	Performance
Over charge	At 20 \pm 5°C, charging batteries with constant current 3C ₅ A to voltage 5V then with constant voltage 5V till current decline to 0. Stop test till batteries temperature 10°C lower than max temperature.	No explosion or fire
Over discharge	At 20 \pm 5°C, discharge battery with 0.2C $_{5}$ A continuously 12.5h.	No explosion or fire
Short circuit	At 20±5°C, connect batteries anode and cathode by wire which impedance less than 50m Ω , keep 6h.	No explosion or fire
Extrusion	20±5°C, put the battery in two parallel steal broad, add pressure 13kN.	No explosion or fire
Thermal shock	Put the battery in the oven. The temperature of the ovenis to be raised at 5±1°C per minute to a temperature of 130±2°C and remains 60 minutes.	No explosion or fire

6. Schematic battery

7. Cautions

Cautions of batteries operation

The batteries must be careful of proceed the operation for it is soft package.

Aluminum packing materials

The aluminum packing material was easily damaged by the sharp edge part, such as nickel-tabs.

- 1. Forbid to use the sharp part touching the battery.
- 2. Should cleaning working condition, avoiding the sharp edge part existence.
- 3. Forbid to pierce the battery with nail and other sharp items.
- 4. The battery was forbidden with metal, such as necklace, hairpin etc in transportation and storage.

Sealed edge

1. Sealed edge is very easily damaged and don't bend it.

2. The aluminum interlayer of package has good electric performance. It's forbidden to connect with exterior component for preventing short-circuits. (Short the anode and the aluminum interlayer of package will cause corrosion or swollen of the cell).

Folding edge

- 1. The folding edge is formed in batteries processes and passed all hermetic test, don't open or deform it.
- 2. The aluminum interlayer of package has good electric performance. It's forbidden to connect with exterior component for preventing short-circuits. (Short the anode and the aluminum interlayer of package will cause corrosion or swollen of the cell).

Tab: The cathode is aluminum tab and the anode is Nickel tab

- 1. The batteries tabs are not so stubborn specially for aluminum tab. Don't bend tabs.
- 2. The tab-tapes are used to isolute. The anode/cathode tabs from aluminum packing materials to prevent short circuit, so prohibit manicuring of the tab-tapes.

Mechanical shock

- 1. Don't fall, hit, bent the batteries body.
- 2. Don't knock on by sinker or trample the batteries.
- 3. Don't sling the batteries.

Short circuit

Short circuit is strictly prohibited. It should damage batteries badly.

- 1. Don't connect the anode and cathode of the batteries to avoid short-circuit.
- 2. Prohibit short-circuit of the anode (or cathode) and aluminum layer of aluminum packing materials.

Standard test environment for polymer lithium-ion batteries

Environment temperature

1 20±5°C

Humidity

1 45~85%

Cautions of charge and discharge

Charge

Charging current should be lower than values that recommended below. Higher current and voltage charging may cause damage to cell electrical, mechanical, safety performance and could lead heat generation or leakage.

- 1. Batteries charger should charging with constant current and constant voltage mode.
- 2. Charging current should be lower than (or equal to) $1C_5A$.
- 3. Temperature 0~45°C is preferred when charging.
- 4. Charging voltage must be lower than 4.25V.

Discharge

- 1. Discharging current must be lower than (or equal to) 2C₅A.
- 2. Temperature -10~60°C is preferred when discharging.
- 3. Discharging voltage must not be lower than 2.75V.

Over discharge

It should be noted than the cell would be at an over-discharge state by its shelf-discharge. In order to prevent overdischarge, the cell shall be charged periodically to keeping voltage between 3.6-3.9V. Overdischarge may cause loss of the cell performance. It should be noted that the cell would not discharge till voltage lower than 2.75V.

Storage of polymer lithium-ion batteries

- The battery should be stored with 40-60% charge state.
- The environment of-long time storage.
- Temperature: 20±5°C.
- Humidity: 45-85%.
- Batteries were 40~60% charged.
- The battery had better charge a time per three month during its storage for avoiding over discharge.
- Please charge the battery with constant current $0.5C_5A$ for 1 hour once every three month when is storage so that it has some storage of charge for properly using.
- Charge and discharge afresh to active and renew battery energy after storage above 1 year.

Transportation of polymer lithium-ion batteries

The batteries must be transported with 10~50% charged states.

Others

Please note cautions bellow to prevent cells leakage, heat generation and explosion.

- 1. Prohibit disassembled cells.
- 2. Prohibit immerse cells into liquid such as water or seawater.
- 3. Prohibit dumping the battery into fire.
- 4. Prohibit soldering directly the battery.
- 5. Prohibit charging the battery near fire or in the hot circumstance.
- 6. Prohibit place the battery in a micro w ave oven or pressurized container.
- 7. Prohibit use or store the battery where is exposed to extremely hot, such as under window of a car in directly sunlight in a hot day. Otherwise, the battery may be overheated. This can also reduce battery performance and/ or shorten service life.
- 8. If the battery leaks and electrolyte gets in your eyes, don't rub them. Instead, rinse them with clean running water and immediately seek medical attention. If left as is, electrolyte can cause eye injury.
- 9. Prohibit using the battery if it gives off an odor, generates heat, becomes discolored or reformed, or appears abnormal in any way. If the battery is in use or being recharged, remove it from the device or charger immediately and discontinue use. If the battery leaks or gives off an odor, move it away from a fire source to avoid fire or explosion.

8. Cell packing and fixing

Notice of designing battery pack: Battery pack should have sufficient strength and battery should be protected from mechanical shock. No sharp edge components should be inside the pack contain the battery.

PCM design

The overcharge threshold voltage should not be exceed 4.25V.

- The over-discharge threshold voltage should not be lower than 2.3V.
- The PCM should have short protection function built inside.

Cell connection

Ultrasonic welding or spot welding is recommended to connect battery with PCM or other parts.

If apply manual solder method to connect tab with PCM, the notice bellow is very important to ensure battery performance.

- 1. The electric iron should be temperature controlled and ESD safe.
- 2. Soldering temperature should not exceed 350°C.
- 3. Soldering time should not be longer than 3 s, keep battery tab cold down before next soldering.
- 4. Soldering times should not exceed 5 times.
- 5. Soldering spot location should be away from the t a b film to ensure the sealing of the tab film.
- 6. The soldering spot should be smooth should be no acumination.

Cell fixing

The battery should be fixed to the battery pack by its large surface area. No cell movement in the battery pack should be allowed.

Cell replacement

The cell replacement should be done by professional people.

9. Warranty

The warranty is specified in our warranties section of *Terms of Sales*. If the product is to be stored for more than three months it is necessary to perform the appropriate maintenance to ensure the good condition of the batteries. Consult our annex to the *Terms of Sales* on the recommended maintenance.